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Abstract

The fixed-lag Kahnan smoother of Cohn et al. (1994), or a version of a more computationally feasible

approximation of it developed by Todling et al. (1998), is under implementation at the Data Assimilation

Office (DAO) to build a retrospective data assimilation system (RDAS). The initial version of the RDAS

uses the physical-space statistical analysis system (PSAS; Cohn et al. 1998) and a modification of the

incremental analysis update (IAU) procedure of Bloom et al. (1996); a follow up version of the RDAS

will require the use of the adjoint of the DAO general circulation model (developed by Y. Yang and I.

M. Navon). The retrospective procedure is designed to produce improved analyses as well as improved

assimilated fields consequently providing an improved climate representation through data assimilation.

1 The lag-1 RDAS formulation

Let y((r) represent an n-vector state of the general circulation model (GCM) on its sigma vertical

coordinate system. Moreover let x(p) represent an m-vector state of the analysis component of the

DAS, which in the case of the DAO system is built in pressure coordinates. This way, we can write

PSAS analysis increments (fxkla(p), at time tk, as

.f T -1
_Xklk(P) -----XkD(P)--Xklk-I(P) = P_:lk_lHkFk vk (1)

where the forecast error covariance matrix Pkllk-_ i is defined on a pressure coordinate system, In the
expression above the rk x m matrix H_ converts pressure fields to observation locations, and the rk x r_,

matrix rk is the error covariance matrix of the rk-residual vector of observation-minus-forecast vk =

x_, - H_,xklk-l(P), and is given by
l T

F_ _ HkPklk_tH k + Rk (2)

where Ra is the rk × rk observation error covariance matrix.

Assume now the existence of a nonlinear operator II that transforms GCM prognostic sigma fields

on to analysis/first-guess pressure level fields. That is, for a given GCM n-vector background field y(_)

an m-vector first-guess field x(p) can be derived according to

x(p) = [I[y(cr)]. (3)

The operator H is nonlinear since it represents more t.ha,_ just simple interpo[ation procedures: it stands

for transformation of variables as well, s_ch as converting potential temperature into heights or deriving

sea level pressure and sea level winds through planetary boundary' layer effects. In the DAO system, the

GCM background state vector is composed of the two zonal and meridiona[ wind components, potential
temperature, specific humidity and surface pressure, that is, y(o') = y(u,v, tg,q._)(o'): tim analysis

state vector is composed of the sea-level pressure, sea-level zonal and meridioual wind components,

upper-air zonal and meridional wind components, geopotentia[ height and mixing ratio, that is, .r(p) =

x(p._, u,_, _,._,., t,, h, q._)(p).
[t is now convenient to introduce an operator 1I+ which takes an analysis state vector x(p) in to a

model state vector y(cr) according to
y(_) -= _+[_(v)]. (4)
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Once tlwse two transformations I! and [l + have been defined we can introduce there corr,,sponding

.lacobian operators as

t)fI[y] y=y _)II ___ 0y ' (5)

n+ - On+[×]l (6)- Ox ×=*(v) "

respectively. The actual implementation of [I + is such that it renders nlinimal the difference I]x(p) -

[l[H+[x(p)]][[. In other words, the error is minimal when transforming an analysis state vector in to a
model state vector and then back to an analysis state vector. In a nonlinear sense, I1+ is a pseudo-

inverse of I1. Analogously, II + must be a pseudo-inverse of H; in practice, numerical inaccuracies and

the character of the original nonlinearities are such that this can only be achieved to a certain extent.

With the definitions above, the increment (I) can be converted in to a model increment vector as

5Y_:l_(cr) = I-I+[×Mk(P)] -- Yklk-l(O') . (7)

which is then be used, after proper rescaling, as the IAU forcing term (see Bloom et al. 1996).

From Todling and Cohn (1996) the lag-1 retrospective analysis increment is given by

pa AT r_r r-5x,-llk,k-_(P) = Xk-llk(P) - xk-llk-t(P) = --k-llk-l_'k,k-i--k k lvk, (8)

T
which as in the regular (filter) analysis is given in pressure coordinates. The operator Ak.k_ 1 is the

adjoint of the tangent linear model of the GCM and of all transformations involved in taking state

vectors from the model to the analysis grid and vice-versa; the operator P_:-tlk-_ is the analysis error
covariance obtained from

Pk-llk-t (I /a = -- Kk_llk_tHk_l)P_:_llk_2. (9)

To derive the proper equation for the operator Ak.k-t we introduce the GCM evolution equation

through an operator that acts on model fields as follows

Yklk- _(_) = ._ [yk-_lk-_(_)1. (to)

The nonlinear GCM evolution operator :k4 has the Jacobian operator defined as

t).td [y] y=y(cr) (].l)M(_r) -Z by

which also acts on model (perturbation) fields. Together with the Jacobians introduced previously the

operator Ak,k-1 can be shown to have the following explicit form

Ak,k-l(p) -------HkM_ k-1(a)II+_ t . 12)

The need for the adjoint of Ak._-t(p) in (8) indicates the requirement for constructing nol only the
T

adjoint, Mk,k_ l, of the model's tangent linear operator Mk k-t but also the adjoint of both IIk and

II +_ The final lag-1 retrospective analysis increment on the model variables is derived as

dyk_tlk.k_l(o') = y___lk(O')--yk_tp:_l(Cr)

= I1+ (Xk__i___(p)+tfXe__l_.e_t(t))) --yk_tle_t(rr). (13)

This increment can be rescaled properly and used in the IAU procedt_re to obtain the retrospective IAl(

assimilation. The motivation for using the retrospective analysis increments 5x__ _lk-_(P) to produce axl
IAU increment that is then used to force the model and perform another GCM integration is similar to

that of the original IAU procedure, i.e., to produce a consistent (tynamically balanced and continuous
history of the model fields.



2 The approximate RDAS

Let us eonsi,ler the expression for the [a_;-I rot rosl)eCfiv,: im'rement when we take the approximation of

replacing the arljoint of the ,tvlmmic.s r,porat.or A I' with the idel_tilv matrix. In this case, we can
• _ kl¢-i .

write tim lag-1 retrospective analysis inerenwnl as

(I K_.__la._lH__ / r -t= - 1)Pk_ilk_,,H_.. P_, va. (14)

where the last equality is obt ained after substituting the analysis error covariance at tk-1 with its explicit

form, and a tilde is used to indicate this is an approximat( quantity.

In practice, in many three-dimensional variational systems, the forecast error covariance matrix

P£-llk-2 is constant in t.ime z. [f we take this matrix to be constant we can write

dXk-llk,_-t = (I--Kk_llk_lHk_t)dxktk (15)

where 6x,¢1,: is the regular (filter) analysis increment. Thus. the expression above provides an extremely

simple way of calculating the lag-1 retrospective increment given the analysis increment. As a matter of

fact, the last term in the expression above corresponds to an application of PSAS to the vector H__ ldXkl,,,

which replaces the innovation vector needed when calculating the filter analysis. This quantity represents

the projection of the current (filter) analysis increments on the observation grid of the previous analysis

time.

IAU Assimilation vs Approximate Retrospective IAU Assimilation
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Figure 1: Schematic representation of 1.\[: (within heavy grab" rectangle) and retrospective IAU (within

light gray rectangle). Dashed arrows represent the C, CM integration: solid arrows represent (;CM

integration forced by l.\l" (thin arrows) and retrospective IAU increment (thick arrows).

"['he expression l;7,r retrospective analysis im:rements can be extemle(l to tags higher than one. with

the general lag (' result being

dxv-et_-k-I = (I- Kk-;[a.-_'H_--,)d:_k-e+tik_-i (16)

where 0":_k_elk.k_ t =_ _-elk -- Xk-elk-[- The equation above states that each lag of tile approximate

retrospective pro,'edure can be obtaim'd from t.h_" retrospective increme_t of the previously calculated

I This is not the c;ts0 in the l-)AO's System. h,_we;'er, f,_t + all pr;u:tica, I pt_rl),,ses lh,. forecast el't'_)r covariance matrix can

be considered to be constant since it varies v,'ry slowly in time.



retrospectiw, in,'rmllent with one additional PSAS application. With the' assumption ofconst.ant forecast

error cov;_ri,'mc:,s, the' s;mw can be shown to be true f_r the algorithm involving the adjoint operator(s)

of the previous section. We remark further that:

• When the forecast error covariance matrix P/ is kept constant, the only time dependence in the

gain matrix K__ tlk- t comes from the time dependence of the observing network.

• It can be shown that, when the forecast errors are indeed independent of the dynamics, expression

([6) corresponds to the optimal solution for the lag-_ retrospective increments, in the linear,

minimum variance sense.

• Furthermore, when the observing system is constant in time, the lag-1 retrospective analysis al-

gorithm corresponds to a single step of the bias estimation procedure of Dee and da Silva (1999),

when the bias first-guess is null. In other words, each lag-1 retrospective analysis corresponds to

a less biased analysis than that of the filter.

A schematic representation of the approximate lag-1 RDAS is shown in Fig. 1, where the thick solid

arrows in the lower, light shaded, rectangle indicate the retrospective IAU assimilation trajectory.

3 Preliminary results

In this section we briefly show the performance of the RDAS versus that of the regular DAS using an

identical-twin experiment set up. We construct observations from a control run of the DAS. The control

run is a complete DAS run with the full observing network of rawinsondes, TOVS height retrievals,

conventional surface data and Wentz total precipitable water. This experiment serves as the truth, from

which we construct observations, for the following experiments, at exactly the same locations as the

original observations.

obs(HIIrr) I mb O¢ig;nQI Assimilotion abs(Uefr} I mb Oe;Qinal Ass;tailor;on

abs(HeCr) mb Asslm;Iotion from LacJ-I Anolysls aos(Uerr) mb Assim;l(Ition from Log-1 Analysis

Figure 2: Assimilation versus lag-1 ret.rospectiw_ assimilation. Panels show 10-day mean absolute error

for heights (left) and zonal winds {right), at 1 rob. Top panels are for assimilation, bottom panels are

for retrospective assimilation.

Two experiments are ran for a 10-day period with the DAS and the IqDAS. In Fig. 2 we show the

(10-day) mean absolute error in both these experiments for the the height and zotml wind fields at l

rob. High in the stratosphere the inain (only) source of data are the TOVS height retrievals. \Ve see



fronltile tigureaconsidorabh_iniprovementin theassimilathmwh,musingtheretrospectiveprocedure
(bob'tompanels).Thereductionin errors in the height field is more pronounced than for the winds since

the only source of wind correction this high up comes from the nmltirariate aspect of PSAS. Since the

error covariance formulation in PSAS is nearly geostrophic, with a weak relaxation from geostrophy near

the equator, wind error reduction is not as significant along the tropics.
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Figure 3: Absolute mean error in mass stream function for lag-1 ret.rospective assimilation (left.) and

assimilation (right).

Another indication of the overall improvement obtained in the assimilation through the RDAS is

seen in Fig. 3 where the absolute error in the mass-stream function, averaged over the 10-day period

of the experiments, is shown. We see a slight improvement in the Hadley circulation during this period

when comparing the RDAS (left panel) against the DAS (right panel). Other climatologically significant

quantities show similar marginal improvement.

4 Conclusions

Preliminary results indicate the lag-1 RDAS to provide improvements over the DAS. Experiments for

time scales of a month to a season are being conducted to assess more accurately the impact on the

assimilation climatology. Examination and experimentation of the complete RDAS procedure involving

the adjoint operators will follow.


